

Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k)

James (Yuan) Liu N&R Engineering

3rd NASA GRC Propulsion Control and Diagnostics Workshop February 28, 2012

C-MAPSS40k Overview

- Engine description
- Engine simulation
- Control system
- User features
- Recent updates & ongoing work

Engine Description

- 40,000-lb_f thrust class
- High-bypass, dual-spool turbofan

Engine Simulation

- Component-level modeling
- Physics-based
 - Aerothermodynamics
 - Performance maps
- Operates over wide range of environmental conditions
 - Mach, altitude, DTamb
- Faster than real-time
 - Components coded in C
 - Assembled in Simulink
 - Run via MATLAB
- Detailed stall margin model
- Engine health condition

Engine Simulation

- Dynamics
 - Nonlinear dynamical system with spool speeds as state variables
- Flow continuity
 - Iterate to ensure mass flow balance at each time step
 - Realistic transient performance

Control System

- Representative of industry standard
- Controls engine based on throttle input
- Calculate fuel flow, variable stator vane position (VSV), variable bleed valve position (VBV)
- Uses typically sensed engine outputs
- Simulates actuator/sensor dynamics

Control System

- VSV, VBV are scheduled on sensed engine parameters
- Fuel: gain-scheduled PI feedback control on EPR/Nf with protection logic

User Features: Graphical Interface

- Environmental & throttle inputs
- Control settings
- Simulation settings
- Engine health settings
- Plot & save data

User Features: Script/Command Line

- MATLAB command line
- MATLAB scripts
- MS Excel input profile generation

User Features: Steady-State Solver

- Steady-state engine model calculates the initial conditions for any point in flight envelope before simulation run
- Faster and more elegant than "flying" to desired starting point from a known initial flight condition

User Features: Linear Models

$$\dot{x} = Ax + Bu + Lh$$
$$y = Cx + Du + Mh$$

- Generate linear models about any equilibrium point (i.e., flight condition)
- Specify flight/health condition
- Specify state/input variable vectors
- Verify and save linear model

Updates & Ongoing Work

- Heat soakage
 - Metal temperature state variables to enhance realism of transient performance
- Simulink library structure
 - Main Simulink file links to libraries for engine, controller, and actuators
- Different fuel types
 - Easily swappable thermodynamic tables
- Off-nominal variable stator vane positions
- High angle-of-attack
 - Inlet distortion effects due to high angle-of-attack flight

Summary

- Simulation of 40,000-lb_f class, high-bypass, dualspool turbofan engine
- Physics-based, component-level model
- Faster than real-time
- Realistic control system
- Graphical/command-line user interfaces
- Linear model generation

Related NASA Publications

- Csank, Jeffrey, May, Ryan D., Litt, Jonathan S., and Guo, Ten-Huei, "Control Design for a Generic Commercial Aircraft Engine," AIAA-2010-6629, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, July 25-28, 2010, also NASA/TM—2010-216811, October 2010.
- May, Ryan D., Csank, Jeffrey, Lavelle, T. M., Litt, Jonathan S., and Guo, Ten-Huei, "A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller," AIAA-2010-6630, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, July 25-28, 2010, also NASA/TM—2010-216810, October 2010.

Available for download from the NASA Software Repository https://sr.grc.nasa.gov/public/project/77/